Практическое занятие №13

Отделочные работы

Трудоемкость – 1 час.

Задачу решать по своему варианту.

ПРИМЕР: Требуется проверить возможность подачи растворонасосом С-211-А известкового раствора на верхний этаж возводимого здания. Раствор подается по трубопроводу и шлангам диаметром d=50 мм. Консистенция раствора Sl=8 см осадки конуса. Высота подъема H=15 м. Длина участков по горизонтали: прямых $l_1=25$ м, с закруглениями $l_2=15$ м, по вертикали раствор подается по металлическим трубам.

РЕШЕНИЕ: Суммарное сопротивление растворопровода Δ_p , выраженное в $\kappa c/cm^2$ на 1,0 м растворопровода, согласно рекомендациям доктора технических наук Γ . Б. Ивянского в общем виде определяется по формуле:

$$\Delta_{p} = \Delta^{1}_{p} \times K_{Q} \times K_{d} \times K_{M} \times K_{H} \times K_{\Pi} , \qquad (6.1)$$

где: Δ^1_p — максимальная величина сопротивления на 1 M горизонтального растворопровода из резиновых шлангов при производительности насоса Q=1, 0 M^3/vac и установившемся равномерном движении при консистенции раствора 7,0 cM; Δ^1_p — для известково песчаного раствора состава 1:3= 0,22; Δ^1_p = для смешанного раствора 1:1:6 = 0,15; Δ^1_p = для цементно-песчаного раствора 1:3 = 0,13; K_Q = коэффициент, зависящий от производительности насоса Q M^3/vac ; K_Q = 0,5 + 0,5 \sqrt{Q} ; K_d — коэффициент, учитывающий влияние диаметра растворопровода:

d, мм	38	50	62,5	75
K_d	1,0	0,7	0,45	0,35

 $K_{\rm M}$ — коэффициент, зависящий от типа растворопровода: при резиновых шлангах $K_{\rm M}=1,0$; при металлических трубах $K_{\rm M}=1,8$; $K_{\rm H}$ — коэффициент, зависящий от характера движения раствора: при установившемся равномерном движении $K_{\rm H}=1,0$; при неустановившемся $K_{\rm H}=1,5$; $K_{\rm H}$ — коэффициент влияния консистенции раствора: значения $K_{\rm H}$ следующее:

Осадка конуса Sl, см	6	7	8	10
K_{π}	1,28	1,0	0,86	0,6

Величина гидравлических сопротивлений при закруглении на 7% выше, чем при прямом растворопроводе.

При перекачивании раствора на высшую отметку добавляются сопротивления, затрачиваемые на преодоление веса раствора в среднем $0.19 - 0.20 \ \kappa z/cm^2$ на $1.0 \ m$ разности отметок. Для условий настоящей задачи: $\Delta^1_p = 0.00 \ \kappa z/cm^2$

0,22; $K_Q = 0,5 + \sqrt{3},0 = 1,36$; $K_d = 0,7$; $K_M =$ для горизонтального перемещения = 1,0; для вертикального = 1,8; $K_H = 1,5$; $K_{\Pi} = 0,86$.

Тогда сопротивления растворопроводов движению по горизонтали на прямых участках будут равны. $\Delta_{p1}=(0.22\times1.36\times0.7\times1.0\times1.5\times0.86)\times25=0.261\times25=6.52$ кг/см²; то же на закруглениях: $\Delta_{p2}=0.261\times1.07\times15=4.19$ кг/см²; то же при движении по вертикали: $\Delta_{p3}=(0.22\times1.36\times0.7\times1.8\times1.5\times0.86\times15)+(0.20\times15)=7.04$ кг/см²;

Общее сопротивление движению раствора по растворопроводе составит: $\Delta = 6.52 + 4.19 + 7.04 = 18.35 \text{ кг/см}^2$.

Согласно источнику [6] растворонасос C-211-A имеет предельное рабочее давление $15 \ \kappa z/cm^2$. Таким образом, рабочее давление растворонасоса C-211-A для подачи раствора на верхний этаж недостаточно. Следует либо применить другой тип насоса или поставить на каком-либо этаже добавочный растворонасос C-211-A.

Решить предыдущую задачу с изменением ее условий согласно вариантам, приведенным в таблице 6.1.

Таблица 6.1 – Данные для подбора растворонасоса

Вариант	р, м ³ /час	d, мм	Sl, см	Н, м	<i>l</i> ₁ , м	l _{2,} м
1	6	62,5	10	14	20	10
2	6	75	8	12	30	15
3	3	50	7	10	20	12
4	3	62,5	6	14	15	10
5	2	38	10	8	30	8
6	3	50	8	10	20	10
7	6	75	7	12	30	15
8	3	50	6	8	20	12
9	2	38	10	10	15	10
10	6	75	7	12	30	8
11	2	38	8	10	20	10

1. Найдем максимальную величину сопротивления на 1 м горизонтального растворопровода из резиновых шлангов ($\Delta 1$ p) при производительности насоса $Q=6\,\mathrm{m}^3/\mathrm{ч}$ ас и консистенции раствора $Sl=7\,\mathrm{cm}$: $\Delta 1$ p=0,15

2. Рассчитаем коэффициент KQ:

$$KQ = 0, 5 + 0, 5\sqrt{6} = 1, 5$$

3. Найдем коэффициент Kd в зависимости от диаметра растворопровода (d):

$$d = 75 \,\mathrm{mm}$$

$$Kd = 0.35$$

4. Определим коэффициент Км для металлических труб:

$$K_M = 1.8$$

5. Коэффициент Кн для установившегося равномерного движения:

$$KH = 1, 0$$

6. Коэффициент $K\pi$ в зависимости от осадки конуса (Sl):

$$Sl = 7 \,\mathrm{cm}$$

$$K\pi = 1, 0$$

7. Рассчитаем сопротивление на горизонтальных участках:

$$\Delta$$
р $1=(0,15\times 1,5\times 0,35\times 1,8\times 1,0\times 1,0\times 1,0)\times 30=1,17\,{
m kg/cm^2}$

8. Сопротивление на закруглениях:

$$\Delta p2 = 1,17 \times 1,07 \times 8 = 10,03 \, \mathrm{kr/cm^2}$$

9. Сопротивление при движении по вертикали:

$$\Delta$$
p3 = $(0, 15 \times 1, 5 \times 0, 35 \times 1, 8 \times 1, 0 \times 1, 0 \times 1, 0 \times 12) + (0, 20 \times 12) = 13,68 \, \text{kg/cm}^2$

10. Общее сопротивление:

$$\Delta = 1,17+10,03+13,68=24,88\,\mathrm{kg/cm^2}$$

11. Проверка по предельному давлению растворонасоса:

$$\Delta \leq 15\,\mathrm{kr/cm^2}$$
 $24,88 > 15$

Таким образом, рабочее давление растворонасоса C-211-А для подачи раствора на верхний этаж также недостаточно. Следует рассмотреть возможность применения другого типа насоса или установку добавочного растворонасоса C-211-А на какомлибо этаже.